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1 Introduction
Measuring and ordering the heterogeneity of systems, such as the diversity of a categorical out-
come observed within populations, has been a longstanding problem with only imperfect solu-
tions. While inequality and concentration measures such as the Gini coefficient and the Herfindal-
Hirschman index (HHI) have commonly been repurposed to measure heterogeneity, features de-
sirable for their intended use can prove to be inappropriate in this case (Kvålseth, 2022; Nunes,
Trappenberg, and Alda, 2020). I address these challenges by axiomatizing a family of measures
that satisfy desiderata better suited for measuring heterogeneity than inequality or concentration.
These new measures are termed the Descriptive Units of Heterogeneity (DUH). The departure from
the term index emphasizes the measures’ cardinal interpretation and its distinction from measures
of inequality and concentration.

Let a system be defined as a partition of a finite, non-empty population into disjoint subsets,
each associated with a distinct group label. The concept of heterogeneity within such a system
pertains to the distribution of group sizes: greater heterogeneity corresponds to more balanced
group sizes, whereas homogeneity reflects the dominance of one or a few groups. For instance,
a bi-partition of a population into two equally sized groups (e.g., 50–50) is considered more het-
erogeneous than a highly imbalanced division (e.g., 99–1). Similarly, a tri-partition such as (45,
45, 10) exhibits greater heterogeneity than (85, 5, 10), due to the more equitable distribution of
individuals across groups. While intuitive comparisons can often be made between such config-
urations, ambiguity arises in intermediate cases—for example, comparing (55, 35, 10) with (60,
20, 20). The challenge becomes more pronounced as the number of groups increases, raising the
question of how to formally characterize and compare heterogeneity across arbitrary partitions.

Measuring heterogeneity fundamentally involves a dimension-reduction problem. When exam-
ining a system comprising numerous groups, the goal is to simplify the complexity while preserv-
ing essential information. Selecting appropriate dimensions to characterize heterogeneity is crucial
to defining measures capable of effectively detecting changes in the system. A sensible way to pro-
ceed is to determine first the bounds of the measure, and then the ordering of systems that are
neither perfectly heterogeneous nore perfectly homogeneous. The numerical bounds of any het-
erogeneity measure are established by designating perfect heterogeneity as any system in which
all groups contain an equal number of elements, and perfect homogeneity as any system in which
all but one group have zero elements. Subsequent tasks include (1) balancing the relative influence
of large groups versus the distribution of elements across small groups, and (2) clearly defining
how the number of groups contributes to heterogeneity. These considerations are essential since,
for instance, it might seem intuitive that the system

(
1
2
, 1
2

)
is less heterogeneous than

(
1
3
, 1
3
, 1
3

)
;

however, formal criteria are necessary to justify such comparisons.
In applied settings, system heterogeneity is most commonly quantified using either dispersion

measures or concentration measures (James and Taeuber, 1985). Dispersion measures, originally
devised for the measurement of inequality, typically rely on an implicit ordering of outcomes
such as household income. Although these measures are formally invariant under permutations
of outcome labels, meaningful interpretation of changes in their values frequently presupposes a
commonly accepted ordering of those labels. Concentration measures, by contrast, originated in
industrial organization and are primarily sensitive to the dominance of large firms, thus largely
neglecting distributional variation among entities with smaller total shares in the market. While
both types of measures fall short of providing a comprehensive account of heterogeneity, their
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underlying logic offers a useful starting point for further refinement.
Dispersion measures, more commonly known as measures of inequality such as the Gini co-

efficient, quantify inequality with the distance between the observed population distribution and a
benchmark distribution. Making inference on system heterogeneity with dispersion measures are
simple but it is often limited by the Lorenz criterion. Atkinson (1970) show that comparing any two
systems using the distance between distributions requires significant restrictions on the domain of
comparable systems; otherwise, different measures can be made to rank any two systems in oppos-
ing ways. Within the bounds of such restrictions, the interpretation of a dispersion index is simply
“the higher the number, the greater the heterogeneity.” One well-known example of a dispersion
index is the Gini coefficient. While its simple interpretation contributes to its popularity, Schwartz
and Winship (1980) point out that many empirical researchers fail to account for these restrictions
when using the Gini coefficient to rank income inequality (pp. 2, 8). Such failure can lead to ob-
scured inferences (pp. 9-13). To relax the Lorenz criterion, Weymark (1981) characterizes a set
of generalized Gini absolute and relative inequality measures that rank systems consistently given
assigned weights, even when the Lorenz criterion is not satisfied.

Concentration measures measure the richness of information from select subgroups of the pop-
ulation. The usage of these units are not limited by the Lorenz criterion, but they tend to poorly
reflect the information provided by the distribution of smaller groups. The Herfindahl-Hirschman
index (HHI) and Shannon’s entropy (SE) are popular examples of concentration measures. By
emphasizing the influence of large groups, concentration measures well reflect changes in hetero-
geneity in systems when a large group shrinks. However, this feature can cause concentration mea-
sures to report negligible changes in heterogeneity when there are drastic changes between small
groups. Additionally, because the objective of concentration measures is to measure concentration,
they omit any information provided by the presence of groups with zero elements (zero-groups).
These features are not desirable for a measure of heterogeneity because the existence of multiple
zero-groups increases the variance of group sizes.

I axiomatize a new family of measures that (1) yield cardinal interpretation, (2) shift the focus
away from large groups, (3) account for the presence of zero-groups, and (4) share basic properties
with existing measures. I adopt a new yet intuitive approach to model heterogeneity with two
determinants: (1) contribution from the relative size of the largest group and (2) contribution from
the evenness of the rest of the groups. This approach builds on the axiomatic underpinnings of
the dispersion and concentration measures and allows for the addition of certain desiderata more
suitable for measuring heterogeneity. I divide the axioms into two groups: fundamental axioms and
characterization axioms.

Fundamental axioms formalize the most common desiderata across measures of heterogeneity
and induce partial ordering. The axioms are group symmetry (GSYM), scale invariance (INV),
and the principle of transfers (PT). GSYM and INV state that two systems with the same number
of groups are equally heterogeneous if one is a permutation or rescaling of the other. PT estab-
lishes how two marginally different systems should be ordered. Most dispersion and concentration
measures satisfy all three fundamental axioms.

Characterization axioms induce total ordering and uniquely characterize measures. I define
independence (IND), the principle of proportional transfers (PPT), contractibility (CON), and unity
(UNI). IND ensures that the influence of the largest group and that of the evenness of minority
groups are orthogonal; PPT refines PT with cardinal interpretation; CON requires that a measure
of heterogeneity is not invariant to the addition of zero-groups; and UNI normalizes any measure
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to be between 0 and 1. These axioms characterize a family of measures that focus on rendering
the comparison of heterogeneity between systems descriptive—cardinally interpretable, reflective
of changes to small groups, and more suitable for comparing the heterogeneity between arbitrary
systems. This family of measures is termed the descriptive units of heterogeneity (DUH).

As a direct result of the fundamental axioms, the rank correlation between DUH and other
measures are high. However, many pairs of systems have opposing relative orders because DUH are
not intended for measuring either dispersion or concentration. A closer look at the distribution of
measure values reveal that, given fixed size of the largest group, DUH has a much higher variation
in values than the Gini coefficient, HHI, and SE.

An essential aspect of system heterogeneity lies in how a population is partitioned into groups.
In particular, meaningful comparisons of heterogeneity between systems require that the partitions
be defined over a set of group labels relevant to the context. To illustrate the importance of this
caveat, I present an example in which differing group labels yield conflicting conclusions, thereby
motivating the notion of a reasonable collection of groups. To further demonstrate the applicability
of the DUH, I consider two sets of examples. First, using the evolving racial composition of a
hypothetical city, I show that DUH is particularly well-suited for contexts in which the primary
concern is heterogeneity itself, rather than inequality or concentration. Second, drawing on changes
in Apple’s revenue sources from 2012 to 2023, I demonstrate that DUH is sensitive to shifts in the
distribution of minority groups and can more effectively capture the growth of small categories
than standard measures of inequality or concentration.

The remainder of the paper is organized as follows. Section 2 introduces the foundational prim-
itives for system heterogeneity, reviews existing measures of dispersion and concentration, and
motivates the development of a new approach. Section 3 presents the fundamental and charac-
terization axioms and introduces the proposed framework, which identifies two key determinants
of heterogeneity. Section 4 defines DUH and compares their behavior to that of inequality and
concentration measures. Section 5 outlines best practices for empirical application and provides
illustrative examples that demonstrate the advantages of DUH across diverse contexts. Formal
proofs establishing the uniqueness of the proposed family of measures under the stated axioms are
provided in the Appendix.

2 Model

2.1 Primitives
The objective of a measure of heterogeneity is to induce a total order over the heterogeneity of
populations. The following subsection defines notations used for a convenient discussion.

Definition 1. A population P is a finite, non-empty collection of elements where |P| = N ∈ N. Let
P denote the collection of all P.

Definition 2. Let Θ be the universe of distinct group labels. θ ∈ 2Θ \ ∅ is a finite, non-empty
collection of group labels where |θ| = G ∈ N and θ = {θ1, θ2, . . . , θG} ⊆ Θ.

Definition 3. Let P ∈ P be an arbitrary population such that |P| = N ∈ N and θ ∈ 2Θ \ ∅ be
an arbitrary collection of group labels such that |θ| = G ∈ N. Let S : P × 2Θ \ ∅ → ZG

+ be a
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function that partitions P into G distinct sets according to the elements of θ and outputs a vector
(n1, n2, . . . , nG) where ∀g ∈ {1, . . . , G}, ng is the number of elements in P that belongs to the
partition associated with the label θg ∈ θ.

Definition 4. A system S(P, θ) is the image of the function S with inputs P and θ. For ease of
notation, denote the system S(P, θ) as Sθ

P.

Definition 5. A function Φ : ZG
+ → R is a measure of heterogeneity if, for any two systems Sθ

1 and
Sρ
2 ,

Φ(Sρ
2) ≥ Φ(Sθ

1) ⇐⇒ Sρ
2 is weakly more heterogeneous (≿) than Sθ

1 .

Definition 6. A system Smax
P of G groups is maximally heterogeneous if ∃n ∈ N such that:

Smax
P = (n1, n2, . . . , nG) = n · (1, 1, . . . , 1).

Definition 7. A system Smin
P of G groups is minimally heterogeneous (or perfectly homogeneous)

if all but one element of Smin
P is 0. In other words, Smin

P = (0, 0, · · · , 0, n, 0, · · · , 0, 0).

Under Definitions 6 and 7, it is convenient to restrict any measure of heterogeneity to a bounded
interval, typically between 0 or 1 and a positive real number. Such normalization facilitates the con-
struction of a total order over systems that are neither maximally nor minimally heterogeneous, al-
lowing for arbitrary but principled comparisons subject to reasonable constraints (Marshall, Olkin,
and Arnold, 1979).

Although originally developed for other purposes, measures of dispersion and concentration
are frequently employed in applied research as measures for heterogeneity (James and Taeuber,
1985). While often appropriate, features that are desirable in their original domains may be less
suitable when the objective is to assess heterogeneity. Nonetheless, many of these measures have
been axiomatized using desiderata that are foundational to the study of heterogeneity. For example,
Rothschild and Stiglitz (1971, 1973) and Schwartz and Winship (1980) and Schwartz and Win-
ship (1980) provided axiomatizations of the Gini coefficient; Weymark (1981) characterized the
generalized Gini absolute inequality index;Chakravarty and Eichhorn (1991) and Kvålseth (2022)
addressed the Herfindahl–Hirschman Index (HHI); and Shannon’s entropy (SE) has been axiom-
atized by Nambiar, Varma, and Saroch (1992), Suyari (2004), and Chakrabarti, Chakrabarty et al.
(2005). The literature surrounding these measures is well-developed, with extensive theoretical
justification for their axioms grounded in various approaches to social welfare (Chakravarty, 2015;
Cowell, 2000; Lambert, 2002).

2.2 Measures of Dispersion/Inequality
Dispersion measures compare the observed distribution to a benchmark distribution. The Gini
coefficient, a well-known dispersion measure, regards a system as the rank distribution of a single
outcome, typically household income, and compares that distribution to the uniform distribution.
The distance between the two distributions represents the amount of heterogeneity of the system.
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Blackorby and Donaldson (1978) shows that the Gini coefficient can be written as:

Gini(Sθ
P) = 1− 1

G2
·


G∑

g=1

(2g − 1)n̂g

µ(n)

 ,

where G is the number of groups, µ(n) = 1
G

G∑
g=1

ng, and n̂g is the size of group g in the ordered

permutation of Ŝθ
P such that n̂1 ≥ n̂2 ≥ · · · ≥ n̂G. The Gini coefficient evaluates inequality

through the relationship: “the top x% of households earn the top y% of income.” Under perfect
equality—corresponding to maximal heterogeneity in group sizes—this relationship satisfies x =
y. Deviations from this equality indicate the presence of inequality. While this interpretation is
intuitive and widely used, it relies on a restrictive assumption: the Lorenz criterion. Specifically, the
Gini coefficient provides a consistent ordering of inequality between two distributions if and only if
their Lorenz curves do not intersect. When Lorenz curves cross, the Gini-based ordering becomes
ambiguous, limiting its applicability for comparing heterogeneity across such cases (Atkinson,
1970; James and Taeuber, 1985; Marshall, Olkin, and Arnold, 1979; Schwartz and Winship, 1980).
Nunes, Trappenberg, and Alda (2020) discuss several other dispersion measures in the context of
ecology, biology, and medicine. These measures exhibit other limitations which render them less
practical the context of system heterogeneity.

To escape the Lorenz criterion, Weymark (1981) characterizes a class of generalized Gini ab-
solute inequality indices:

Generalized.Gini(Sθ
P) = µ(n)−

G∑
g=1

wgn̂g,

with weights wg satisfying w1 ≤ w2 ≤ · · · ≤ wg,
G∑

g=1

wg = 1, and n̂g and µ(n) are as previously

defined. Unlike the standard Gini coefficient, which yields meaningful comparisons only when
Lorenz curves do not intersect, this generalized formulation induces total orders over systems
with an equal number of groups, even in the presence of intersecting Lorenz curves. However, the
very flexibility that enables such generality also limits the practical appeal of these indices, as the
absence of a canonical weighting scheme complicates their interpretation and empirical application
(Gajdos and Weymark, 2005; Weymark, 2003).

Other dispersion measures such as the Hoover index (Hoover, 1936) and the Atkinson index
(Atkinson, 1970) focus on a normative approach to interpret the distance between the observed
system and the uniform distribution. The Hoover index measures the average absolute distance
between each household’s income and the average household income, while the Atkinson index
is a generalized measure that can specify the effect of changes to the distribution among the low-
income households via a inequality-aversion parameter.

Cowell (2000) provides a comprehensive overview of inequality measures, including the dis-
cussion of desirable properties, technical features, and empirical applications. Lambert (2002) dis-
cusses the usage of inequality measures in taxation schemes and social welfare. A fundamental
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aspect of the discussion is the “inequality aversion assumed for the underlying social welfare func-
tion” (p. 6). And inequality aversion relies on a natural ordering of groups in a system. Such a
normative approach is clearly suitable for inequality, but not necessarily practical in the case of
heterogeneity where the groups in a system can be unordered.

2.3 Measures of Concentration
Concentration measures quantify the extent to which a system is dominated by its largest groups,
thereby capturing the degree of dominance or aggregation within the distribution. In contrast, mea-
sures of heterogeneity are concerned with the overall dispersion or spread across all groups, rather
than the relative size of the largest ones. Chakravarty and Eichhorn (1991) show that both the
HHI and SE are derivatives of the Hannah-Kay class of concentration measures (Hannah and Kay,
1977), defined with the perception parameter α as:

HG
α

(
Sθ
P
)
=


[

G∑
g=1

Pα
g

] 1
α−1

if α > 0, α ̸= 1

G∏
g=1

P
Pg
g if α = 1

, where Pg =
ng

G∑
g=1

nG

.

Consider a system Sθ
P with G = |θ| groups. HHI (Herfindahl, 1950; Hirschman, 1945) and its

complement, the Gini-Simpson index (GSI) (Gini, 1912; Simpson, 1949), of system S are defined
as:

HHI
(
Sθ
P
)
=

G∑
g=1

P 2
g = HG

2

(
Sθ
P
)
, GSI

(
Sθ
P
)
= 1−HHI

(
Sθ
P
)
.

SE is defined as:

SE
(
Sθ
P
)
= −

G∑
g=1

[Pg · ln (Pg)] = −ln
(
HG

1

(
Sθ
P
))
.

HHI induces a total order over systems and admits a cardinal interpretation: it represents the
probability that two independent draws, with replacement, from the population will belong to the
same group. Despite its intuitive appeal, HHI places disproportionate weight on changes in the
sizes of larger groups. This property is advantageous in contexts where concentration is of primary
interest, such as in the assessment of market power among firms (Chakravarty and Eichhorn, 1991;
Herfindahl, 1950; Hirschman, 1945) or the influence of political parties (Laakso and Taagepera,
1979).

Consider, for example, the two systems (48,47,5) and (60,29,11). The GSI assigns values of
0.5462 and 0.5438 to these systems, respectively—suggesting a nearly identical degree of de-
concentration.However, the underlying group structures differ in a substantively meaningful way:
the first system comprises two dominant groups and a small residual group, while the second fea-
tures a single dominant group with a more gradual decline in size among the remaining groups. his
illustrates a case in which reliance on GSI may obscure important structural distinctions, limiting
its informativeness as a measure of heterogeneity. In contrast, the DUH values for these systems
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are 0.2865 and 0.3170, respectively, indicating that the second system is substantially more het-
erogeneous. This example underscores the importance of restricting the use of HHI and GSI to
contexts concerned with concentration rather than employing them as general-purpose measures
of heterogeneity (Kvålseth, 2022). The simplicity of interpretation offered by HHI and GSI can, in
such cases, mask salient differences between systems.

SE is another widely used measure of concentration, particularly in the information theory
and rational inattention literature (Pomatto, Strack, and Tamuz, 2023; Sims, 2010, 2003). As a
negative logarithmic transformation of HG

1

(
Sθ
P
)
, SE differs in two important respects: (1) it lacks

the cardinal interpretation of HHI; and (2) it exhibits different behavior under refinements of the
group structure, particularly when existing groups are subdivided.

Moreover, both HHI/GSI and SE are invariant to the addition of zero-groups. While such in-
variance is intuitive in contexts involving market shares or uncertainty, it becomes problematic in
contexts of assessing heterogeneity. Instead, GSI satisfies the so-called small-subgroups property,
as shown by Chakravarty (2015). This property states that “the addition of a subgroup with popula-
tion size smaller than that of the smallest of the existing subgroups, all other subgroups’ population
sizes held constant, will increase the value of the fractionalization index” (pp. 112–113). Notably,
the proof requires that the added subgroups be non-empty, due to the zero-group invariance of the
measure. DUH, on the other hand, satisfies the small-subgroups property and also decreases its
value with the addition of zero-groups. This added sensitivity makes DUH well-suited for com-
paring systems with differing numbers of groups, and for capturing structural changes that are
otherwise obscured by measures exhibiting zero-group invariance.

The precise ordering of heterogeneity across systems depends critically on the nature of the
comparison and the degree of similarity between the systems under consideration. Contrary to
the common idiom, comparisons between fundamentally different entities—such as apples and
oranges—need not be inherently meaningless. When evaluated along well-defined and shared di-
mensions (e.g., density, color intensity, or sugar concentration), such comparisons can yield infor-
mative insights. It is even conceivable to assess both entities relative to a property characteristic of
only one—for instance, citrus quality—though such an evaluation would predictably disadvantage
the non-citrus item. However, certain comparisons remain intrinsically problematic. For example,
comparing x to y when asserting that an apple is x times denser than an ice cube, and an orange is
y times more round than a bowling ball.

To meaningfully compare heterogeneity across systems, it is essential to first establish the
criteria that render such systems comparable. A key consideration is the inclusion of all potential
group labels, including those associated with zero population. Incorporating zero-groups provides
a consistent reference frame for evaluating heterogeneity. Accordingly, when comparing systems
with differing numbers of groups, the system with fewer groups should be interpreted as implicitly
containing additional groups with zero population. This approach ensures that heterogeneity is
assessed over a common group structure, thereby enabling valid and interpretable comparisons.

Adapting a concentration measure to account for the inclusion of zero-groups is hardly rev-
olutionary. Cracau and Lima (2016) show that a normalized version of HHI solves this issue by
revising the formula to:

NHHI
(
Sθ
P
)
=
HHI

(
Sθ
P
)
− 1

G

1− 1
G

∈ [0, 1].
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This measure improves system comparability by including the number of groups in its functional
form at the of HHI’s probabilistic interpretation. 1

3 Axioms for Measures of Heterogeneity
As discussed above, the ordering of heterogeneity across systems can, in many cases, be deter-
mined flexibly to accommodate specific properties subject to some limitations. In this section,
I propose a set of axioms that reflect desiderata more appropriate for the measurement of system
heterogeneity. These axioms are intended to guide the construction and evaluation of heterogeneity
measures that are sensitive to structural features beyond mere dispersion or concentration.

I begin by introducing the set fundamental axioms that induce a partial order over systems.
These axioms establish conditions under which two systems should be regarded as equally hetero-
geneous, and how two systems should be ordered when one is derived from the other through an
elementary transformation.

Axiom 1 (Group Symmetry (GSYM)). A measure of heterogeneity Φ satisfies the property of
Group Symmetry if for every permutation π

(
Sθ
P
)

of Sθ
P, Φ

(
Sθ
P
)
= Φ

(
π
(
Sθ
P
))

.

GSYM requires that the heterogeneity of a system in invariant to a reassignment of group
labels, holding the original partitions fixed. For example, take na, nb, nc ∈ N,

θg

Sθ
P Sθ

a Sθ
b Sθ

c

θ1 n1

∼
n2

∼
n3

θ2 n2 n1 n2

θ3 n3 n3 n1

GSYM ensures that a measure of heterogeneity depends solely on the distribution of group
sizes, not on the specific labels assigned to those groups. If two systems have the same number of
groups and their group size distributions are permutations of each another, they should be assigned
the same heterogeneity value. Satisfying GSYM allows for meaningful comparisons between sys-
tems defined over different group label sets, provided the cardinality of the set of group labels is
identical. This axiom thus abstracts away from group identity and focuses exclusively on structural
features of the distribution.

Axiom 2 (Scale Invariance (INV)). A measure of heterogeneity Φ satisfies the property of Scale
Invariance if for any system Sθ

P and a scalar λ ∈ R++, Φ(Sθ
P) = Φ

(
λ · Sθ

P
)
.

1Consider the following two systems:

Sθ
1 = (0.4, 0.4, 0.2) and Sθ

2 = (0.5, 0.3, 0.1, 0.1).

These two systems have the same HHI (0.36), but they have different NHHIs (NHHI(S,G = 3) = 0.04 and
NHHI(S′, G = 4) ≈ 0.15). By observation, it may not be clear whether S1 and S2 are equally homogeneous,
but a comparison of these two NHHIs is unlikely to be convincing. Once we account for zero-groups and make
S1 = (0.4, 0.4, 0.2, 0), the NHHIs of the two systems are the same (0.15)—just like their HHIs—but the level of
heterogeneity can no longer be intuitively interpreted.
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Scale Invariance (INV) permits the generalization of systems from vectors of non-negative in-
tegers to vectors of non-negative real numbers. While systems are initially defined as partitions
of finite populations—represented by integer-valued group sizes—satisfaction of INV allows the
heterogeneity measure to remain well-defined under continuous scaling. This axiom ensures that
heterogeneity depends solely on the relative distribution of group sizes, not on their absolute mag-
nitudes. Consequently, the measure is invariant to unit conversions (e.g., from individuals to per-
centages), and its domain naturally expands from partitions of finite sets to partitions over un-
countably infinite sets. Under INV, any system can be represented as a vector of non-negative real
numbers summing to unity, facilitating broader applicability and interpretability.

Axiom 3 (Principle of Transfers (PT)). Let Ŝθ
P be a permutation of Sθ

P such that n̂1 ≥ n̂2 ≥ · · · ≥
n̂G and let eGi be a length G vector where only the ith element is 1 and the rest are 0. A measure of
heterogeneity Φ satisfies the Principle of Transfers if i > j, n̂i−1 ≥ n̂j +1, n̂i−1 ≥ n̂i+1, n̂j−1 ≥
n̂j + 1 implies Φ

(
Ŝθ
P

)
< Φ

(
Ŝθ
P − ei + ek

)
.

PT requires that, holding the order of groups constant, a transfer from a larger group to a
smaller group increases heterogeneity. For example, take n1, n2, n3 ∈ N such that n1 ≥ n2 ≥ n3

and ε < min

{
n2 − n3,

n1 − n2

2

}
.

θg

Sθ
P Sθ

a Sθ
b Sθ

c

θ1 n1

≺
n1 − ε

≺
n1 − ε

θ2 n2 n2 + ε n2

θ3 n3 n3 n3 + ε

Here, Sθ
b is obtained from Sθ

a by transferring ε from the largest group to the second largest, and Sθ
c

is obtained by transferring ε from the largest group to the smallest. In both cases, PT requires that
heterogeneity increases: Sθ

a ≺ Sθ
b ≺ Sθ

c .
This axiom was first formalized by Dalton (1920) in the context of income inequality, stating:

“If there are only two income receivers, and a transfer occurs from the richer to the poorer, inequal-
ity is reduced” (p. 351). It is commonly referred to as the Pigou–Dalton transfer principle, and has
long been regarded as a foundational requirement for inequality measures (Dalton, 1920; Pigou,
1912; Weymark, 1981).

Kolm (1976) shows that any heterogeneity measure Φ satisfying GSYM, INV, and PT induces
a total ordering over systems that satisfy the Lorenz criterion. That is, all measures discussed
in the previous section agree in their ordering of systems whose Lorenz curves do not intersect.
However, when the domain is extended to include systems whose Lorenz curves intersect, the
axioms of GSYM, INV, and PT are no longer sufficient to induce a total order. In such cases,
additional axioms, reflecting more refined normative judgments, are required to fully characterize
the heterogeneity ordering across systems.

3.1 The Two Determinants of Heterogeneity
The Gini coefficient, HHI, and SE satisfy GSYM because their functional forms treat all groups
identically. However, GSYM can be satisfied under a more nuanced interpretation: by treating each
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type of groups, rather than each group, identically. In any system, there is always a largest group
and a set of remaining groups. A measure that distinguishes the largest group from the rest—while
treating all groups of the same type symmetrically—can still satisfy GSYM.

This perspective introduces a useful decomposition of heterogeneity into two distinct determi-
nants: (1) the dominance of the largest group, and (2) the distribution among the remaining groups.
If a heterogeneity measure is constructed such that the influence of the largest group is orthogonal
to that of the rest, then changes in the overall measure can be interpreted with equivalent changes in
either component while holding the other constant. This decomposition enhances interpretability
and allows for more granular analysis of structural variation across systems.

For clarity and convenience in the discussion that follows, I refer to the group with the largest
population share in a system as the largest group, and all other groups as minority groups. To
streamline subsequent definitions and formalizations, I introduce the following notational conven-
tions.

Definition 8 (Ordered system Ŝθ
P). Let Sθ

P be an arbitrary system. An ordered system Ŝθ
P = (n̂1, . . . , n̂G)

is the permutation of Sθ
P such that n̂1 ≥ n̂2 ≥ · · · ≥ n̂G.

Definition 9 (P̂g, P̃g). For any ordered system Ŝθ
P with G groups, define:

P̂g =
n̂g

G∑
g=1

n̂g

and P̃g =
n̂g

G∑
g=2

n̂g

.

P̂g is the relative size of group θg in the population, and P̃g is the relative size of group θg in the
population that excludes the largest group.

Under this framework, a measure of heterogeneity Φ satisfying GSYM can be expressed as a
composite function Φ = Φ(ϕ, ψ), where ϕ

(
Ŝθ
P

)
captures the contribution of the largest group, and

ψ
(
Ŝθ
P

)
captures the contribution of the minority groups to the overall heterogeneity of the system.

This decomposition enables the formulation of characterization axioms that separately address the
structural roles of the largest group and the minority groups, thereby introducing greater flexibility
in the design of heterogeneity measures.

The characterization axioms introduced below, combined with the fundamental axioms, induce
a total order over all systems and uniquely characterize the family of measures DUH. As with
existing axiomatizations of measures such as the HHI and SE, my approach emphasizes cardi-
nal interpretations and specifies how the measures respond to structural changes. However, the
type-of-group framework allows for a more nuanced treatment of group structure. Specifically, it
distinguishes between the contributions of the largest group and the minority groups, enabling the
design of axioms that reflect the dual determinants of heterogeneity.

Axiom 4 (Independence (IND)). A measure of heterogeneity Φ satisfies Independence if it is a
composite function Φ(ϕ, ψ) where ϕ

(
Ŝθ
P

)
= ϕ

(
P̂1

)
and ψ

(
Ŝθ
P

)
= ψ

(
P̂2, . . . , P̂G

)
IND requires that the contributions of the largest group and the minority groups to overall

heterogeneity be treated independently. In particular, it allows for the interpretation of any changes
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in heterogeneity to equivalent changes resulting from adjustments solely to either the size of the
largest group or the distribution among the minority groups. The applicability of IND to systems
with any number of groups necessitates a specific classification between the largest group and all
remaining groups.2

Definition 10. Take p ∈ [1,∞), c1 ∈ R, and c2 ∈ R++. The function ψp : RG−1
+ → R defined as:

ψp(S) = ψ
(
P̃2, . . . , P̃G

)
= 1−

(
G∑

g=2

∣∣∣∣P̃g −
1

G− 1

∣∣∣∣p
) 1

p

,

is a measure of evenness in the distribution of minority groups.

To capture features of the minority groups’ distribution with a function ψp, I define it to be a
function of the Lp−norm between the observed distribution in the minority groups and the uniform
distribution in the minority groups. The Lp−norms with p ∈ [1,∞) and the set of systems with

G groups form a well-defined metric space. Since P̃g ∈ [0, 1] and
G∑

g=2

P̃g = 1 by construction,

the Lp−norm between the minority distribution and the uniform distribution is always between
zero and unity. The specific affine transformation on the Lp-norm makes it such that ψp

(
Sθ
P
)
= 0

corresponds to a system with a minimally heterogeneous minority distribution and ψp

(
Sθ
P
)
= 1

corresponds to a system with a maximally heterogeneous minority distribution.
In pursuit of some cardinal interpretation of changes in Φ when ψp is fixed, I introduce a

minimalist refinement of PT that builds on IND: the principle of proportional transfers.

Axiom 5 (Principle of Proportional Transfers (PPT)). Let Ŝθ
P be an arbitrary ordered system of G

groups. Let eGi be a length G vector where only the ith element is 1 and the rest are 0. A measure
of heterogeneity Φ of Ŝθ

P satisfies the Principle of Proportional Transfers if c ∈ R+, α ∈ R++

n̂1 − c

n̂1 + n̂2 + · · ·+ n̂G

=

(
n̂1

n̂1 + n̂2 + · · ·+ n̂G

)α

and n̂1 − c ≥ n̂2 + P̃2 · c

⇒ Φ

(
Ŝθ
P − c · eG1 +

G∑
g=2

P̃gc · eGg

)
= α · Φ

(
Ŝθ
P

)
PPT specifies that, holding the order of groups constant, a proportional transfer from the largest

group to the minority groups—such that the size of the largest group is reduced from P̂1 to
(
P̂1

)α
,

for some α ∈ R++—should increase heterogeneity by a factor of α. In other words, any measure
satisfying PPT responds to reductions in the size of the largest group in a tractable and predictable
manner, provided that (1) the distribution among the minority groups remains unchanged, and
(2) the original largest group retains its status as the largest group after the transfer. This axiom
formalizes the intuition that diminishing dominance, while preserving internal minority structure,
increases heterogeneity in an interpretable way. For example, when comparing the heterogeneity
of Sθ

a and Sθ
b such that

2Alternative categorizations—such as separating the two largest groups from the rest—would be problematic when
there are only two or three groups.
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θg

Sθ
P

Sθ
a Sθ

b

θ1 P̂1

≺
P̂α
1

θ2 P̂2 P̂2 +
P̂2

P̂2+P̂3

(
P̂1 − P̂α

1

)
θ3 P̂3 P̂3 +

P̂3

P̂2+P̂3

(
P̂1 − P̂α

1

)
, PPT prescribes that

Φ
(
Sθ
a

)
< αΦ

(
Sθ
a

)
= Φ

(
Sθ
b

)
.

PPT endows changes in the heterogeneity measure a cardinal interpretation. Specifically, the
relationship 2Φ

(
Sθ
a

)
= Φ

(
Sθ
b

)
can be interpreted as “Sθ

b is twice as heterogeneous as Sθ
a.” This

interpretation holds because Sθ
b has the same value of heterogeneity as would result from reduc-

ing the largest group proportion in Sθ
a from P̂1 to

(
P̂1

)2
, while maintaining both the evenness of

the minority group distribution and the dominance of the original largest group. Thus, PPT pro-
vides a tractable and interpretable link between proportional reductions in group dominance and
proportional increases in measured heterogeneity.

Axiom 6 (Contractibility (CON)). Take an arbitrary ordered system Ŝθ
P of G groups. Denote

Ŝ
θ∪{θG+1}
P = (n̂1, n̂2, . . . , n̂G, 0). A measure of heterogeneity Φ satisfies Contractibility if

n̂2 > 0 ⇒ Φ
(
Ŝ
θ∪{θG+1}
P

)
< Φ

(
Ŝθ
P

)
CON requires that, upon extending a system by introducing a new group label such that the

resulting partition is a zero-group, the overall heterogeneity of the system must decrease. A key
implication of this axiom is that any comparison of heterogeneity across systems implicitly as-
sumes a common group structure, even if some groups are unpopulated. For example, the distri-
bution

(
1
2
, 1
2

)
is maximally heterogeneous among two-group systems, while

(
1
3
, 1
3
, 1
3

)
is maximally

heterogeneous among three-group systems. By CON, comparing these two requires interpreting
the former as

(
1
2
, 1
2
, 0
)

which is less heterogeneous than
(
1
3
, 1
3
, 1
3

)
.

Axiom 7 (Unity (UNI)). Take an arbitrary ordered system Ŝθ
P of G groups. A measure of hetero-

geneity Φ satisfies Unity if

Φ
(
Sθ
P
)
= 0 ⇐⇒ P̂1 = 1

and

Φ
(
Sθ
P
)
= 1 ⇐⇒ P̂1 = P̂2 = · · · = P̂G =

1

G

The axiom UNI serves as a normalization condition, requiring that the heterogeneity measure
Φ
(
Sθ
P
)

attains the value 0 for a minimally heterogeneous system and 1 for a maximally heteroge-
neous system. A measure satisfying UNI thus enables meaningful baseline comparisons, allowing
the heterogeneity of any given system to be evaluated relative to these two reference points.

The Gini coefficient, the HHI, and SE satisfy all of the fundamental axioms as well as some of
the characterization axioms. The additional axioms used to characterize HHI and SE are listed in
Table 1 and formally defined in Appendix C.
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4 Characterizing The Descriptive Units of Heterogeneity
Proposition 1. Let Sθ

P be an arbitrary system with more than three groups. Consider a measure of
heterogeneity Φp

(
Ŝθ
P

)
= Φ

(
ϕ
(
Ŝθ
P

)
, ψp

(
Ŝθ
P

))
that satisfies GSYM, INV, and IND. Holding P̂1

constant, if Φ is strictly increasing in ψp, then Φ
(
ϕ
(
P̂1

)
, ψp

)
satisfies PT if and only if p > 1.3

Definition 11. Let Ŝθ
P = (n̂1, n̂2, . . . , n̂G) be a permutation of an arbitrary system Sθ

P such that
n̂1 ≥ n̂2 ≥ · · · ≥ n̂G. Denote P̂1 = n̂1

n̂1+n̂2+···+n̂G
and P̃g = n̂g

n̂2+···+n̂G
where g ∈ {2, . . . , G} and

p > 1. The family of descriptive units of heterogeneity (DUH) of the system Sθ
P with G ≥ 2 groups

is:

DUH
(
Sθ
P
)
=
ln
(
P̂1

)
ln(G)

·

( G∑
g=2

∣∣∣∣P̃g −
1

G− 1

∣∣∣∣p
) 1

p

− 1

 .
Theorem: The descriptive units of heterogeneity constitute a uniquely determined family of mea-
sures—up to positive scalar multiples—that incorporate evenness through the function ψp, and
satisfy the axioms of group symmetry, scale invariance, independence, the principle of transfers,
the principle of proportional transfers, and contractibility.

Proof sketch4

Step 1: I show that any index using an ordered system divided by the population size as inputs
satisfies GSYM and INV.

Step 2: I then show that any Φ(ϕ, ψp) that satisfies GSYM, INV, and PPT must be a positive
monotonic transformation of 1

P̂1
.

Step 3: I show tha if an Φ(ϕ, ψp) satisfies INV, IND, and PPT, then Φ must be multiplicatively
separable. In other words, Φ = ϕ · ψp.

Step 4: I show that, holding P̂1 constant and assuming GSYM, INV, and IND, the measure Φ,
using the measure of evenness ψp as defined, satisfies PT if and only if p > 1 when G > 3
and p ≥ 1 when G = 3.

Step 5: I show that if Φ(ϕ, ψp) satisfies GSYM, INV, IND, and PPT, then ϕ = −cln
(
P̂1

)
, c ∈

R++.

Step 6: For the case of p = 2, using the Euclidean distance for ψp, I show that the family DUH
satisfies PT, in addition to GSYM, INV, IND, and PPT, by taking the derivative of the extreme
case in which P̂1 is close to 1 and ψ = 1 with respect to a transfer from the largest group to
the second-largest group.

Step 7: I show that the family DUH satisfies CON and UNI.
3This proposition suggests that we need to be careful regarding the functional form of ϕ

(
P̂1

)
. To satisfy PT, it must

be that when there is a transfer from the largest group to a minority group, the increase in ϕ
(
P̂1

)
must dominate the

decrease in ψp in the case where evenness decreases. Also, if G = 3, this proposition holds with p ≥ 1.
4Full proof in Appendix B.
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4.1 The Role of The Evenness Parameter p
Notice that the evenness parameter p, from the function ψp, determines the contribution of evenness
in DUH. As p increases, minority groups that are farther away from 1

G−1
are weighted more. As

p→ ∞,

Lp → L∞ = max
g∈{1,...,G}

{∣∣∣∣Pg −
1

G− 1

∣∣∣∣}.
In words, for sufficiently large values of the evenness parameter p, the function ψp becomes

increasingly sensitive to the most extreme deviations from evenness, such that the heterogeneity
measure is effectively determined by either the largest or the smallest minority group. As illus-
trated in Figure 1, the variation in DUH values, conditional on a fixed value of P̂1, decreases with
increasing p. This reflects the fact that, as the power parameter in the Lp-norm increases, ψp assigns
greater weight to the deviation of the most extreme group share from the uniform benchmark 1

G−1
.

The systems highlighted by the black band correspond to those with DUH values in the interval
([0.58, 0.62]. As p increases, the slope of this band becomes steeper, indicating a reduction in the
range of DUH values associated with a given P̂1.

Figure 1: DUH with Evenness Parameter Set to 2, 20, and 200
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4.2 Comparing DUH to Other Measures
Table 1 shows which axioms are satisfied by the Gini coefficient, DUH, HHI, and SE. Although
conceptually distinct from the Gini coefficient, DUH satisfy all axioms that the Gini coefficient
does and more; the additional characterization axioms enable DUH to induce a total order over
arbitrary systems, thereby overcoming the limitations imposed by the Lorenz criterion.

In contrast, the differences in axiomatic properties among DUH, HHI, and SE reflect the dis-
tinct normative foundations and intended applications of each measure. Specifically, while HHI
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and SE satisfy expandability, i.e., invariance to the inclusion of zero-population groups, DUH do
not. Both HHI and SE satisfy their own additional characterization axioms, endowing these mea-
sures unique cardinal interpretations of concentration.5

Importantly, all measures considered here can be affine-transformed, for a fixed |θ|, to satisfy
the normalization axiom UNI. As a measure of heterogeneity, DUH complements inequality and
concentration measures in applied contexts by fulfilling distinct analytical objectives.

Table 1: Measures and Axioms

Type Axiom Gini DUH HHI SE

Fundamental
Group symmetry (GSYM) ✓ ✓ ✓ ✓

Scale invariance (INV) ✓ ✓ ✓ ✓

Principle of transfers (PT) ✓ ✓ ✓ ✓

Characterization4

Independence (IND) × ✓ ✓ ✓

Principle of proportional transfers (PPT) × ✓ × ×
Contractibility (CON) ✓ ✓ × ×
Unity (UNI) ✓ ✓ × ×
Expandability × × ✓ ✓

Replication principle × × ✓ ×
Shannon’s additivity × × × ✓

When the Lorenz curves of two arbitrary systems do not intersect, the Gini coefficient, DUH,
GSI, and SE induce the same order over those systems. Consequently, the rank correlations be-
tween these measures, and more generally among all Schur-convex measures, are expected to be
high. Using the permutation of distinct ordered systems with 100 total elements, Table 2 presents
the correlation and rank correlation matrices for the case where |θ| = 3, an arbitrary choice for the
number of groups.6

Table 2: Correlation Matrices with |θ| = 3, |P| = 100

Correlation Matrix Rank Correlation Matrix
DUH Gini GSI SE DUH Gini GSI SE

DUH 1 0.957 0.832 0.874 1 0.974 0.957 0.987
Gini 1 0.947 0.953 1 0.9951 0.987
GSI 1 0.984 1 0.985
SE 1 1

However, the key contribution of DUH lies in its ability to differentiate between systems that do
not satisfy the Lorenz criterion. Figure 2 illustrates this distinction by plotting the rank percentiles
of the Gini coefficient, GSI, and SE against those of DUH for systems with three groups and a total

5See Appendix B for the definitions of Expandability, the Replication Principle, and Shannon’s Additivity, as well as
the unique characterizations these axioms provide.

6One can verify that similar correlation patterns hold for other values of |θ|. See Table A1 for the case with ten groups.
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of 100 elements.7

In the axes of Figure 2, a higher rank percentile means the measure evaluates a system to be
more heterogeneous. The red diagonal lines indicate systems that receive identical absolute rank
percentiles under DUH and the comparison measure. Any pair of points connected by a line with
negative slope corresponds to two systems whose heterogeneity rankings are reversed between
DUH and the stated measure. According to the Lorenz criterion, a transfer from a larger group to a
smaller group increases heterogeneity; thus, as the size of the largest group decreases, the number
of distinct systems that are more heterogeneous necessarily declines. Consequently, discrepancies
in rankings between DUH and the other measures are more prevalent at the lower end of the
heterogeneity spectrum than at the upper end.

Figure 2: Rank Correlation between Measures for |θ| = 3, |P| = 100
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To elucidate the source of relative rank differences, Figure 3 presents a direct comparison
between DUH and each of the Gini coefficient, GSI, and SE. For consistency across panels, the
Gini coefficient, GSI, and SE are affine-transformed to satisfy UNI.

The horizontal axis in Figure 3 represents the size of the largest group in the system, denoted
P̂1, while the vertical axis captures the difference between the second-largest and smallest group
sizes, P̂2 − P̂3. For any fixed value of P̂1, the GSI exhibits limited variation along the vertical axis,
indicating insensitivity to differences between minority group sizes. In contrast, the variation in SE
depends on the value of P̂1; when P̂1 is sufficiently close to 1

3
or 1, SE becomes nearly invariant.

DUH, by comparison, display substantial variation along both axes and is approximately constant
only when P̂1 and P̂2 − P̂3 move in opposite directions.

5 Empirical Applications of DUH
DUH, as a family of parsimonious descriptions of heterogeneity in systems with discrete distribu-
tions over unordered population groups, lend themselves to a wide range of empirical applications.
This section presents two illustrative examples that demonstrate the practical utility of DUH in
applied settings. As in the previous section, the Gini coefficient, GSI, and SE are normalized to lie
within the unit interval [0, 1], wherever applicable, to facilitate direct comparison across measures.

Before proceeding, it is important to emphasize the role of researcher discretion in defining
the set of group labels θ. The empirical relevance and interpretability of DUH—and indeed of

7The analogous figure for systems with ten groups is provided in Figure B1.
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Figure 3: Comparison between DUH, Gini, GSI, and SE with |θ| = 3 and p = 2
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any heterogeneity measure—depend critically on the construction of this group partition. In all
applications that follow, the DUH measure employed uses the evenness parameter p = 2.

5.1 Reasonable Collection of Groups θ
Satisfaction of the CON axiom requires that the set of group labels, θ, be constructed with care,
as each element θg ∈ θ must be meaningfully comparable to the others. Figure 4 illustrates this
principle using a practical example: the evolution of the racial composition of the San Francisco
Metropolitan Statistical Area from 2017 to 2022, based on the American Community Survey
(ACS) 1-year data (Ruggles et al., 2024).

In panel (a), the set of group labels is θ = {White,Black,Other}, aggregating all non-White,
non-Black individuals into a single residual category. In panel (b), the “Other” category is disaggre-
gated into three distinct subgroups, yielding θ = {White,Black,Asian,Native American,Multi-Race}.

In panel (a), the three-group heterogeneity of San Francisco remains relatively stable over
time, driven by a decline in the White population and a corresponding increase in the “Other”
population. Heterogeneity begins to decline after 2019, when the “Other” group surpasses the
White population as the largest group and continues to grow. This shift highlights the importance of
the GSYM axiom, which enables researchers to interpret heterogeneity as a distributional property
independent of group labels.

However, the inference changes once the group label θ is redefined to capture finer distinctions
among subgroups. In panel (b), where the Asian, Native American, and Multi-Race populations
are considered separately, heterogeneity increases after 2019, reflecting the proportional growth of
these subgroups while shrinking the White population, holding the order of group sizes constant.
Such distributional changes are precisely what the PPT axiom is designed to capture.

As this example illustrates, there is no universally correct specification of θ. The determination
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Figure 4: Different Collection of Groups Can Yield Opposite Inferences
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of group labels is a framing decision left to the discretion of the researcher. Just as the use of the
Gini coefficient presupposes the Lorenz criterion, the application of any heterogeneity measure
requires a justified and contextually appropriate choice of group labels. In the case shown in Fig-
ure 4, a simple refinement of a residual category alters the inference, underscoring the importance
of careful consideration in defining a reasonable θ.

With these considerations in place, we now turn to examples that illustrate when and why DUH
measures are useful. The following applications show how DUH captures distributional features
that other measures may overlook, particularly in settings where proportional differences matter.

5.2 Using DUH for Racial Heterogeneity
Consider a hypothetical city composed of three racial groups: White, Black, and Other. Table 3
reports the population shares and corresponding heterogeneity measures across five decades. Over
time, the White population steadily increases, while the distribution between the two minority
groups becomes more balanced.

Under this configuration, DUH increases monotonically, reflecting the growing evenness be-
tween the minority groups. In contrast, GSI decreases due to the rising dominance of the White
population. SE initially increases but declines in the final period. These divergent trends underscore
the distinct properties of each measure.

The key limitation of GSI and SE is that their sensitivity to elementary transfers is highly pos-
itively correlated with group size. In this example, DUH mitigates that bias by capturing changes
in the distribution among minority groups, even when those groups are relatively small. This high-
lights DUH’s utility in contexts where minority group dynamics are of substantive interest.
8All measure values are rounded to second digit after the decimal.
9Note that all systems here have intersecting Lorenz criterion so the Gini coefficient cannot be used for inference.
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Table 3: The Progression of Racial Composition and Racial Heterogeneity of a Hypothetical City

Share (%) Decade
1 2 3 4 5

White 55% 60% 65% 66% 69%
Black 42% 34% 26% 22% 17%
Other 3% 6% 9% 11% 14%
DUH8 0.21 0.23 0.26 0.28 0.31
Gini9 0.48 0.46 0.45 0.45 0.44

Norm. GSI 0.78 0.78 0.75 0.75 0.71
Norm. SE 0.73 0.77 0.77 0.78 0.76

5.3 Using DUH for Revenue Heterogeneity
DUH can also be applied to measure the extent of diversification in a firm’s revenue portfolio.
Consider Apple Inc., whose revenue is generated from five major product categories: iPhone, iPad,
Mac, Wearables & Accessories, and Services. Figure 5 compares DUH with GSI and SE in this
context, where concentration measures are commonly used to assess revenue diversification (Apple
and Statista, 2024).

Figure 5: Revenue Heterogeneity using DUH, GSI, and SE
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While the three measures generally move in tandem, a notable divergence occurs between
2020 and 2023. During this period, the revenue shares of Services and Wearables & Accessories
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increased without a corresponding decline in the share of iPhone revenue. This shift reduced the
evenness among the minority product categories. DUH captures this change through a continu-
ous and substantial decline, whereas the decrease in GSI is comparatively limited. This example
highlights DUH’s sensitivity to internal distributional changes, even when the dominant category
remains stable.

6 Conclusion
While measures of inequality and concentration are often employed to assess heterogeneity, their
underlying value functions may introduce features that are not well-suited for capturing hetero-
geneity as a distributional property. To address this limitation, I characterize a new family of
measures—Descriptive Units of Heterogeneity (DUH)—that evaluate heterogeneity differently
from the standard repurposed measures.

Building on the axiomatic foundations of classical measures such as the Gini coefficient, the
Herfindahl–Hirschman Index, and Shannon’s entropy, DUH are uniquely characterized by their
sensitivity to two components: the size of the largest group and the evenness among minority
groups. This structure departs from symmetric algebraic treatments of all group shares and al-
lows for a more flexible and interpretable representation of heterogeneity. DUH support cardinal
interpretation of changes, including proportional statements such as “system A is x times more
heterogeneous than system B,” through the principle of proportional transfers.

An essential part of this explication is the importance of researcher discretion in defining the
group labels θ. While the overall model may appear elaborate, it provides a transparent and unam-
biguous framework for comparing heterogeneity across systems. As demonstrated in Section 5.2,
DUH is not intended to replace existing measures but to complement them in contexts where
sensitivity to minority group dynamics and zero-group non-invariance are analytically relevant.
In settings where the focus is on dominant groups alone, such sensitivity may be undesirable.
Nonetheless, DUH offers a tractable and axiomatic approach for researchers seeking to understand
the evolution of heterogeneity in diverse empirical environments.
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Appendices
Appendix A Additional Graphs and Tables

Table A1: Correlation Matrices with |θ| = 10, |P| = 100

Correlation Matrix Rank Correlation Matrix
DUH Gini GSI SE DUH Gini GSI SE

DUH 1 0.910 0.760 0.888 1 0.933 0.940 0.979
Gini 1 0.559 0.688 1 0.992 0.957
GSI 1 0.947 1 0.964
SE 1 1

Figure B1: Rank Correlation for |θ| = 10, |P| = 100
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Appendix B Proofs
Lemma 1: Any measure Φ(n1, . . . , nG) of system S = (n1, . . . , nG) satisfies SYM if (n1, . . . , nG)
is a vector ordered such that n1 ≥ n2 ≥ · · · ≥ nG.

Proof of Lemma 1:
The proof is trivial, given that the groups are ordered by size and not the label of the groups.

This is a convenient consequence of defining systems as mappings from the universe of groups to
a vector of numbers.

Lemma 2: If an index Φ(φ, ψ) of heterogeneity satisfies SYM, INV, and PPT, it is monotonically
decreasing in P1, and therefore a positive monotonic transformation of 1

P1
.

Proof of Lemma 2:
Take any 2 systems of G groups S = (n1, n2, . . . , nG) and S ′ = (n′

1, n
′
2, . . . , n

′
G) such that

Φ(S) > Φ(S ′) and that the (n2, . . . , nG) = S̃ = λ · S̃ ′ = λ · (n′
2, . . . , n

′
G), λ ∈ R++, then by scale

invariance:

Φ(n1, n2, . . . , nG) > Φ(n′
1, n

′
2, . . . , n

′
G) = Φ

(
n′
1 ·
nS

n′
S

, n′
2 ·
nS

n′
S

, . . . , n′
G

nS

n′
S

)
.

By the principle of proportional transfers, since n1 +n2 + · · ·+nG = n′
1
nS

n′
S
+n′

2
nS

n′
S
+ · · ·+n′

G
nS

n′
S

,

Φ(S) > Ψ(S ′) ⇐⇒ n1 < n′
1 ·
nS

n′
S

⇐⇒ P1 < P ′
1.

Lemma 3: If an index Φ(φ, ψ) of heterogeneity satisfies SYM, INV, PPT, and IND, then Φ = φ·ψ.

Proof of Lemma 3:
Notice first that independence trivially implies that φ and ψ must be separable. Take any system

S with G groups. By the principle of proportional transfers, it must be that ∀α ∈
[
1, n1+P̃2·n1

n−2+P̃2·n1

]
α · Φ(P1, P2, . . . , PG) = Φ

(
Pα
1 , P2 + P̃2 (P1 − Pα

1 ) , . . . , PG + P̃G (P1 − Pα
1 )
)

⇐⇒ αΦ(P1, P2, . . .) = Φ (Pα
1 , P

′
2, . . . , P

′
G) ⇐⇒ α =

φ (Pα
1 )

φ(P1)
.

where ∃λ ∈ R++ s.t. λPg = P ′
g, ∀g ∈ {2, . . . , G}.

Definition 10. Take p ∈ [1,∞), c1 ∈ R, and c2 ∈ R++. The function ψp : RG−1
+ → R defined as:

ψp(S) = ψ
(
P̃2, . . . , P̃G

)
= 1−

(
G∑

g=2

∣∣∣∣P̃g −
1

G− 1

∣∣∣∣p
) 1

p

,

is a measure of evenness in the distribution of minority groups.
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Proposition 1. Let Sθ
P be an arbitrary system with more than three groups. Consider a measure of

heterogeneity Φp

(
Ŝθ
P

)
= Φ

(
ϕ
(
Ŝθ
P

)
, ψp

(
Ŝθ
P

))
that satisfies GSYM, INV, and IND. Holding P̂1

constant, if Φ is strictly increasing in ψp, then Φ
(
ϕ
(
P̂1

)
, ψp

)
satisfies PT if and only if p > 1.10

Proof of Proposition 1:
Consider two ordered systems S = (P1, . . . , Pg, Pg+1, . . . , PG) and S ′ = (P1, . . . , Pg−c, Pg+1+

c, . . . , PG) where c < Pg−Pg+1

2
. Define c̃ = c

P2+···+PG
. I want to show that ψ(S) < ψ(S ′) and

Φ(S) < Φ(S ′), thus satisfying PT.

Given S and S ′, we have

ψp(S) = 1−
(∣∣∣∣P̃2 −

1

G− 1

∣∣∣∣p + · · ·+
∣∣∣∣P̃g −

1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 −
1

G− 1

∣∣∣∣p + · · ·+
∣∣∣∣P̃G − 1

G− 1

∣∣∣∣p)
1
p

ψp(S
′) = 1−

(∣∣∣∣P̃2 −
1

G− 1

∣∣∣∣p + · · ·+
∣∣∣∣P̃g − c̃− 1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 + c̃− 1

G− 1

∣∣∣∣p + · · ·+
∣∣∣∣P̃G − 1

G− 1

∣∣∣∣p)
1
p

.

Observe that

ψp(S) < ψp(S
′)

⇐⇒
(
P̃g −

1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 −
1

G− 1

∣∣∣∣p + C

) 1
p

>

(
P̃g − c̃− 1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 + c̃− 1

G− 1

∣∣∣∣p + C

) 1
p

⇐⇒
∣∣∣∣P̃g −

1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 −
1

G− 1

∣∣∣∣p > ∣∣∣∣P̃g − c̃− 1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 + c̃− 1

G− 1

∣∣∣∣p.
Case 1: 1

G−1
< P̃g+1 < P̃g, then∣∣∣∣P̃g −

1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 −
1

G− 1

∣∣∣∣p > ∣∣∣∣P̃g − c̃− 1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 + c̃− 1

G− 1

∣∣∣∣p
⇐⇒

(
P̃g −

1

G− 1

)p

+

(
P̃g+1 −

1

G− 1

)p

>

(
P̃g − c̃− 1

G− 1

)p

+

(
P̃g+1 + c̃− 1

G− 1

)p

⇐⇒

(
P̃g − 1

G−1

)p

+

(
P̃g+1 − 1

G−1

)p

2
>

(
P̃g − c̃− 1

G−1

)p

+

(
P̃g+1 + c̃− 1

G−1

)p

2
.

⇐⇒ p > 1( making the function xp convex).

Case 2: P̃g+1 <
1

G−1
< P̃g, then∣∣∣∣P̃g −

1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 −
1

G− 1

∣∣∣∣p > ∣∣∣∣P̃g − c− 1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 + c− 1

G− 1

∣∣∣∣p
⇐⇒

(
P̃g −

1

G− 1

)p

+

(
1

G− 1
− P̃g+1

)p

>

(
P̃g − c− 1

G− 1

)p

+

(
1

G− 1
− P̃g+1 − c

)p

⇐⇒
(
P̃g −

1

G− 1

)p

−
(
P̃g − c− 1

G− 1

)p

︸ ︷︷ ︸
>0

+

(
1

G− 1
− P̃g+1

)p

−
(

1

G− 1
− P̃g+1 − c

)p

︸ ︷︷ ︸
>0

> 0.

10This proposition suggests that we need to be careful regarding the functional form of ϕ
(
P̂1

)
. To satisfy PT, it must

be that when there is a transfer from the largest group to a minority group, the increase in ϕ
(
P̂1

)
must dominate the

decrease in ψp in the case where evenness decreases. Also, if G = 3, this proposition holds with p ≥ 1.
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Case 3: P̃g+1 < P̃g <
1

G−1
, then∣∣∣∣P̃g −

1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 −
1

G− 1

∣∣∣∣p > ∣∣∣∣P̃g − c− 1

G− 1

∣∣∣∣p + ∣∣∣∣P̃g+1 + c− 1

G− 1

∣∣∣∣p
⇐⇒

(
1

G− 1
− P̃g

)p

+

(
1

G− 1
− P̃g+1

)p

>

(
1

G− 1
− P̃g + c

)p

+

(
1

G− 1
− P̃g+1 − c

)p

⇐⇒

(
1

G−1 − P̃g

)p

+

(
1

G−1 − P̃g+1

)p

2
>

(
1

G−1 − P̃g + c

)p

+

(
1

G−1 − P̃g+1 − c

)p

2
.

⇐⇒ p > 1( making the function xp convex).

Last, if G = 3, then case 2 is the only case, meaning that the RHS of the statement can be
expanded to p ≥ 1.

Proposition 2. If an index Φ(φ, ψ) of heterogeneity satisfies INV, IND, and PPT, then it must be
Φ = φ(P1) · ψ(P̃2, . . . , P̃G) where φ(P1) = −c · logq(P1), c ∈ R++.

Proof of Proposition 2:
From the previous two lemmas, we know that φ(P1) must be a positive monotonic transforma-

tion of 1
P1

and that for α such that Pα
1 > P2 + P̃2(P1 − Pα

1 ), we must have

α =
φ(Pα

1 )

φ(P1)
.

Notice that the only positive monotonic transformation that would satisfy this is logq
(

1
P1

)
, up to

a positive scalar multiplication. Further, notice that any logq
(

1
P1

)
can be rewritten as

ln
(

1
P1

)
ln(q)

, so it

is equivalent to write c · ln
(

1
P1

)
. As such, φ(P1) = c · ln

(
1
P1

)
, c ∈ R++ is the unique function,

up to positive scalar multiplication, of majority proportions that can lead to Φ(φ, ψ) satisfying in-
dependence, scale invariance, and the principle of proportional transfers.

Theorem: The descriptive units of heterogeneity, Φ defined as

Φp(n1, . . . , nG) = − ln (P1)

ln(G)

1−( G∑
g=2

(
P̃g −

1

G− 1

)p
) 1

p


=
ln (P1)

ln(G)

( G∑
g=2

(
P̃g −

1

G− 1

)p
) 1

p

− 1

 ,
where P1 =

n1

n1 + · · ·+ nG

, P̃g =
ng

n2 + · · ·+ ng

, p ∈ (1,∞).,

constitute a uniquely determined family of measures—up to positive scalar multiples—that in-
corporate evenness through the function ψp, and satisfy the axioms of group symmetry, scale
invariance, independence, the principle of transfers, the principle of proportional transfers, and
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contractibility.

Proof of Theorem 1:
Propositions 1 and 2 combined implies that DUH satisfy SYM, INV, PPT, and IND, but not

necessarily PT. I have only shown that DUH satisfy PT when either φ or ψp is held constant, which
means that I need to be careful with the functional form of φ(P1). To satisfy PT overall, it must
be that when there is a transfer from the majority group to the minority group, the increase in Φ
through φ(P1) dominates the decrease in Φ through ψp in the case in which evenness decreases as
a result of the transfer.

To show that Φ satisfies PT, we only need to look at the extreme case in which P1 is close to 1
and ψp = 1. In this case, a simple transfer from n1 to n2 will decrease ψp the most. For simplicity,
we will consider the case in which p = 2, so that Φ is simply

Φ(n1, . . . , nG) =
ln (P1)

ln(G)

√√√√ G∑
g=2

(
P̃g −

1

G− 1

)2

− 1

 .
Denote n2 + · · ·+ nG as ñS , a transfer of x from n1 to n2 when ψ = 1 can be written as

Φ2 = ln

(
n1 − x

nS

)
√√√√( ñS

G−1
+ x

ñS + x

)
+ (G− 2)

(
ñS

G−1

ñS + x
− 1

G− 1

)2

− 1

 .
Taking the derivative of this expression with respect to x, we have ∀x ∈

[
0, (G−1)n1−ñS

G

]
:

d

dx
Φ2(n1 − x, n2 + x, n3, . . . , nG) =

√
G−2
G−1

[
ñS(x− n1)ln

(
n1−x
nS

)
+ x(b+ x)

]
(x− n1)(x+ ñS)2

+
1

n1 − x
> 0.

As such, the Family DUH satisfies PT, in addition to GSYM, INV, IND, and PPT. To see that the
family DUH satisfies CON, see that P1 and all the P̃g’s are invariant to the addition of zero-groups,
so I only need to check that ψp decreases when G increases by 1. In other words, I only need to

show that
(

G∑
g=2

∣∣∣∣P̃g − 1
G−1

∣∣∣∣p) 1
p

increases in G. First, observe the following inequality:

G∑
g=2

∣∣∣∣P̃g −
1

G− 1

∣∣∣∣p = G∑
g=2

∣∣∣∣P̃g −
1

G
+

1

G
− 1

G− 1

∣∣∣∣p

≤
G∑

g=2

(∣∣∣∣P̃g −
1

G

∣∣∣∣p + ∣∣∣∣ −1

G(G− 1)

∣∣∣∣p) =
G∑

g=2

∣∣∣∣P̃g −
1

G

∣∣∣∣p + G− 1

Gp(G− 1)p

<<<

G∑
g=2

∣∣∣∣P̃g −
1

G

∣∣∣∣p + 1

Gp
=

G∑
g=2

∣∣∣∣P̃g −
1

G

∣∣∣∣p + ∣∣∣∣0− 1

G

∣∣∣∣p = G+1∑
g=2

∣∣∣∣P̃g −
1

G

∣∣∣∣p
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Taking the pth root on both side, we have(
G∑

g=2

∣∣∣∣P̃g −
1

G− 1

∣∣∣∣p
) 1

p

<

(
G+1∑
g=2

∣∣∣∣P̃g −
1

G

∣∣∣∣p
) 1

p

.

To see that the family DUH satisfies UNI, verify that Φ(1, 0, . . . , 0) = 0 and Φ
(
1
G
, . . . , 1

G

)
= 1,

for all G ∈ N \ {1, 2}.
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Appendix C Characterization Axioms of HHI and SE
Axiom C.1 (Expandability (EXP)). Take an arbitrary system Sθ

P = (n1, . . . , nG) of G groups.Φ
satisfies expandability if

Φ(n1, . . . , nG) = Φ(n1, . . . , nG, 0).

It should be clear that neither EXP nor CON attempts to pin down the functional form of a
meaure. Rather, these two opposing axioms serve as the divide between a unit for concentration
and a unit for heterogeneity.

As discussed extensively by Atkinson (1970), the fact that PDT only induces partial order-
ing implies that specific functional forms can always be chosen to induce different total orders
when neither system’s distribution second-order stochastically dominates the other.11 The func-
tional forms of both HHI and SE were able to be uniquely characterized because of this feature.12

HHI uses EXP and the replication principle (REP), and SE uses EXP and Shannon’s additivity
(SADD).

[REP] Replication Principle. Φ(n1, . . . , nG) satisfies the replication principle for concentra-
tion if replicating a system k times divides the system concentration by k.

Axiom C.2 (Replication Principle (REP)). Take an arbitrary system Sθ
P of G groups. Φ satisfies

the replication principle for concentration if replicating a system k times divides the system con-
centration by k.

For example, take k ∈ N,

1

k
Φ(n1, . . . , nG) = Φ

n1

k
,
n1

k
, . . . ,

n1

k︸ ︷︷ ︸
Sum to n1

,
n2

k
,
n2

k
, . . . ,

nG

k
, . . . ,

nG

k︸ ︷︷ ︸
Sum to nG

 .

REP pins down the cardinal meaning of the unit by linking the multiplication of the unit to how
many times a system is divided/replicated into a system with more groups. Chakravarty and Eich-
horn (1991) show that if a concentration unit C can be represented as a self-weighted quasilinear
mean, then C is the Hannah-Kay index of concentration if and only if C satisfies the fundamental
axioms and REP.13 Since HHI is Hn

α=2(S), it is the unique self-weighted quasilinear concentration
unit that satisfies the fundamental axioms, EXP, and REP. Notice that REP applies only when every
group is broken into multiple groups. To prescribe how the index behaves when only one group is
broken up, SE forgoes REP and restricts the measure based on Shannon’s additivity instead.
11Newbery (1970) shows that no additive functional forms can be chosen to induce the same order as the Gini coeffi-

cient. This impossibility theorem stems from and reaffirms the point made by Atkinson (1970).
12Similarly, I use this feature to uniquely characterize the descriptive units of heterogeneity.
13A relative concentration index C : D → R is called a self-weighted quasilinear mean if for all n ∈ N, x ∈ Dn,
Cn(x) is of the form

Cn(x) = ϕ−1

[
G∑

g=1

Pgϕ (Pg)

]
,

where ϕ : (0, 1] → R is strictly monotonic.
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Axiom C.3 (Shannon’s additivity (SADD)). Define ngj ≥ 0 such that ng =
mg∑
j=1

ngj ,

∀g ∈ {1, . . . , G} and ∀j ∈ {1, . . . ,mg}. The measure Φ satisfies Shannon’s additivity if

Φ(n11, . . . , nGmG
) = Φ(n1, . . . , nG) +

G∑
g=1

ng

nS

· Φ
(
ng1

ng

, . . . ,
ngmg

ng

)
.

By setting mg = 1, ∀g ∈ {1, . . . , G− 1} and nG′ = nG + nG+1), SADD implies htat

Φ(n1, . . . , nG, nG+1) = Φ(n1, . . . , nG′) +
nG′

n1 + . . .+ nG−1 + nG′
· Φ
(
nG

nG′
,
nG+1

nG′

)
.

SADD pins down how the decomposition of group(s) in a system should influence the unit.14

For detailed proofs of the unique characterization of SE and explanations of SADD, readers
should refer to Suyari (2004) and Chakrabarti, Chakrabarty et al. (2005).

14An example of decomposing a group is to split the sales of Macs into Mac desktops and Mac laptops, for the purpose
of measuring the heterogeneity of Apple’s revenue streams.
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