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Common Distributions

Normal X ∼ N(µ, σ2)
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Lognormal X ∼ Lognormal(µ, σ2)
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xσ
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σ2
), x > 0

E[X] =exp(µ+
σ2

2
), V ar(X) = [exp(σ2)− 1]E[X]2

Note: A lognormally distributed r.v. is an r.v. whose logged
version is normally distributed.

Chi-Square X ∼ χ2
n

Let Z ∼ Normal(0, In), Z
′Z =

n∑
i=1

Z2
i ∼ χ2

n

E[X] = n, V ar(X) = 2n

t Distribution with df = n

Let Z ∼ Normal(0, 1), X ∼ χ2
n. Define T ≡ Z√

X/n
.

Then T ∼ Tn. As lim
n→∞

Tn → Normal(0, 1)

F Distribution with df = n

Let X1 ∼ χ2
k1
, X2 ∼ χ2

k2
. Define W ≡ X1/k1

X2/k2
∼ Fk1,k2

Gamma X ∼ Gamma(α, β)
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1

βαΓ(α)
xα−1exp(−x

β
), x > 0

MGF :(1− βt)−α, t <
1

β

E[X] =αβ, V ar(X) = αβ2

When α = 1, this is equivalent to Exponential( 1
β
).

If X,Y ∼ Gamma(α0, β0), X + Y ∼ Gamma(2α0, β0)
Gamma(α = n

2
, β = 2) ≡ χ2

n.
α represents the time waiting and β represents the scale of
the event (e.g. 1

β
customers come in every α hours, λ = β

α
for

exponential).
Note: This distribution is typically used to model a
continuous time until an event. However, generally, the
gamma distribution is NOT memoryless unless it is the
case of an exponential distribution. In a general question, try
to use exponential instead (reducing α to 1. See problem ⋆ in
selected problems for variations.

Exponential X ∼ Exponential(λ = 1
θ )

PDF :λe−λx, λ > 0 =
1

θ
e−

x
θ

CDF :1− e−λx = 1− e−
x
θ

MGF :
λ

λ− t
, t < λ

E[X] =
1

λ
, V ar(X) =

1

λ2

Note: This distribution is typically used to model a
continuous time until an event.
Exponential is memoryless1

Binomial X ∼ Binomial(n, p)

PMF :

(
n
k

)
pk(1− p)n−k

MGF :(1− p+ pet)n

E[X] =np, V ar(X) = np(1− p)

Negative Binomial X ∼ NegBin(µ, α)

Γ(r) =

∞∫
0

exp(−u)ur−1du, r > 0

Γ(k) =(k − 1)!, k ∈ Z++

PMF :
Γ(α+ x)

Γ(α)x!

(
α

α+ µ

)α(
µ

α+ µ

)x

, x ∈ Z+

MGF :
(
1 +

µ

α
[1− exp(t)]

)−α

, t < −ln

(
µ

α+ µ

)
E[X] =µ, V ar(X) = µ+

µ2

α

When α = 1, this is the geometric distribution
As α → ∞, NB converges to Poisson(µ)

Poisson X ∼ Poisson(θ)

PMF :
exp(−θ)θx

x!
, x ∈ N ∪ {0}

CDF :exp(−θ)

t∑
x=0

θx

x!

MGF :exp[θ(exp(t)− 1)]

E[X] =θ, V ar(X) = θ

Poisson(θ1) + Poisson(θ2) = Poisson(θ1 + θ2)
Note: This distribution is typically used to model the
probability of an event happening given a specific time
period. λ is the frequency of the event in said time period.
Poisson is memoryless1.

Geometric X ∼ Geometric(p)

k total trials (k ∈ N)

PMF :(1− p)k−1p

CDF :1− (1− p)⌊x⌋

MGF :
pet

1− (1− p)et
, t < −ln(1− p)

E[X] =
1

p
, V ar(X) =

1− p

p2

k failures before success (k ∈ N ∪ {0})
This is the special case of Γ(1, µ)

PMF :(1− p)kp

CDF :1− (1− p)⌊k⌋+1

MGF :
p

1− (1− p)et
, t < −ln(1− p)

E[X] =
1− p

p
, V ar(X) =

1− p

p2

Geometric is memoryless1

Some Common Use Cases

Continuous wait time before an event:
Γ(α, β) or Exponential(λ) ≡ Γ

(
1, 1

λ

)
Discrete wait time before an event: NegBin(µ, α) or
Geometric(λ)
Probability of event in a given time:
Poisson(θ)

Multivariate Normal Distribution

Conditional Normal

Consider random vectors Xm×1, Yn×1 that are jointly
normally distributed:(

X
Y

)
∼ Normal

((
µX

µy

)
,

(
ΣXX ΣXY

ΣY X ΣY Y

))
where

ΣXY = Cov(X,Y )m×n =

′∑
Y X

Then,

Y |X ∼ Normal(α+B′X,ΣY |X)

B = Σ−1
XXΣXY

α = µY −B′µX

ΣY |X = ΣY Y − ΣY XΣ−1
XXΣXY

1For discrete P (X > m+ n | X ≥ m) = P (X > n), for continuous P (X > t+ s | X > t) = P (X > s)
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Diagonalization of the Variance Matrix

A real, symmetric matrix Σ (which we assume variance
matrices are), Σ = QDQ′ where Q is an orthonormal matrix
(QQ′ = Q′Q = I) and D is a diagonal matrix of eigenvalues.
If we further assume that A is positive definite, then we

can define Σ− 1
2 = QD− 1

2Q′ where λ′
is are the eigenvalues

and Q is made of corresponding eigenvectors.

D− 1
2 =


λ
− 1

2
1 0 · · · 0

0 λ
− 1

2
2 · · · 0

...
. . . 0

0 · · · λ
− 1

2
n


If matrix B is symmetric and idempotent (Bn = B), then
X ′BX = X ′B′BX = (BX)′BX.
If matrix Bn×n is symmetric, idempotent, and real with rank
m (≤ n), it is diagonlizable with B = QDQ′ where D is a
diagonal matrix with a total of m 1’s in the diagonal.
X
∑

N(0, In) ⇒ X ′
1×nBn×nXn×1 ∼ χ2

m

Important Properties

σ−σ−σ−algebra

Let Ω be the outcome space and B be the σ−algebra
generated by B. Then B must satisfy:

1. Ω ∈ B
2. ∀A ∈ B, Ac ∈ B

3. ∀i ∈ N, Ai ∈ B,
∞⋃
i=1

Ai ∈ B

Probability of Random Draws

Without Replacement With Replacement

Ordered Pn
k = n!

(n−k)!
nk

Unordered Cn
k = n!

(n−k)!k!
Cn+k−1

k = (n+k−1)!
k!(n−1)!

Bayes’ Rule

P (A|B) =
P (A ∩B)

P (B)

P (A|B)P (B) = P (B|A)P (A)

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

Probability as Expectation

Define the indicator function I{statement} to be

I{statement} ≡

{
1 Statement is TRUE

0 Statement is False

Then the probability of an event is the expectation of the
indicator function of the event happening:

P (A) = E[I{A}]

Markov’s Inequality

P (h(X) ≥ b) ≤ E[h(X)]

b

Chebyshev’s Inequality

For c > 0, a > 0, E[X2] < ∞

P (|X − µ| ≥ c) ≤ σ2
X

c2

P (|X − µ| ≥ aσ) ≤ 1

a2

Cauchy-Schwartz Inequality

|E[XY ]| ≤ E[|XY |] ≤ [E[X2]]
1
2 [E[Y 2]]

1
2

Jensen’s Inequality

Let X = supp(X), if g : X → R is convex, then

g(E[X]) ≤ E[g(X)]

Interesting Property of Expectation

If X ≥ 0, E[X] =
∫

supp(X)

1− F (x)dx

Law of Iterated Expectations

EY [Y ] = EX [EY [Y |X]] = EX [EZ [EY [Y |X,Z]|X]]

Law of Total Variance

V ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X])

Conditional/Joint PDFs

fXY (x, y) = fX(x) · fY (y) ⇐⇒ X ⊥⊥ Y

fX(x) =

∫
supp(Y )

fXY (x, y)dy

fX|Y =
fXY

fY
=

∫
supp(Z)

fXY Zdz

fY

=

∫
supp(Z)

fXY Z(x, y, z)

fY (y)
· fXY (x, y)

fXY (x, y)
dz

=

∫
supp(Z)

fZ|X,Y · fX|Y dz

Moreover,

fY,X|Z =
fY XZ(y, x, z)

fZ(z)
=

fY |X,Z(y|x, z)fX,Z(x, z)

fZ(z)

= fY |X,Z(y|x, z) ·
fX,Z(x, z)

fZ(z)

= fY |X,Z(y|x, z)fX|Z(x|z)

Matrix Algebra

A n× n matrix A is orthogonal if ATA = In.
A n× n matrix A is idempotent if ∀n ∈ N, An = A.
Two matrices A1, A2 are orthogonal to each other if
A1A2 = 0n
If a matrix Qn×k is idempotent, then Rank(Q) = tr(Q)
For any two matrices An×k, Bk×l, we have tr(AB) =
tr(BA), tr(A+BT ) = tr(A) + tr(B), tr(cA) = c · tr(A), c ∈ R

X⊤ιι⊤X = (

n∑
i=

Xi)
2

ι⊤ι = n

X̄ = (ι⊤ι)−1ι⊤X

⃗̄X = ι(ι⊤ι)−1ι⊤X

PX = X(X⊤X)−1X⊤

MX = I − PX

Trace can be rearranged cyclically

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

Asymptotic Properties

• A sequence of random variables Xn converges in
mean squared errors to a random variable X if
E[(Xn −X)2] → 0

• A sequence of random variables Xn converges in
probability to a random variable X if
∀ε > 0, P (|Xn −X| > ε) → 0. We can also denote this

as Xn
p−→ X or say Xn −X is op(1).

• A sequence of random variables Xn converges in
distribution to a random variable X if FXn → FX .

• A sequence of random variables Xn is bounded in
probability if ∀ε > 0, ∃bε > 0, P (|Xn| ≥ bε) ≤ ε. We
denote Xn being bounded in probability as
Xn = Op(1).

• Note that convergence in probability implies
convergence in distribution, which implies boundedness
in probability.

• Asymptotic Unbiasedness + Vanishing Variance ⇒
Consistency

• Consistency + Bounded Variance ⇒ Asymptotic
Unbiasedness

Weak Law of Large Numbers (WLLN)

Version 1: If Xi ∼ Di(X) such that E[X], E[X2] < ∞ AND

E[XiXj ] = 0, then X̄n
p−→ E[X]

Version 2: If Xi
iid∼ D(X) such that E[X] < ∞, then

X̄n
p−→ E[X]



Central Limit Theorem (CLT)

If Xi
iid∼ D(X) such that E[X2

i ] < ∞, then

√
n(X̄n − µ)

d−→ N (0, V ar(Xi))

Continuous Mapping Theorem (CMT)

Let g(X) : supp(Xn) → supp(X). If g is a continuous
function on the support of X, we have

Xn
p−→ X ⇒ g(Xn)

p−→ g(X)

Xn
d−→ X ⇒ g(Xn)

d−→ g(X)

Xn
p−→ c ∈ R ∧ Yn

p−→ Y ⇒ XnYn
p−→ cY

Xn
p−→ c ∈ R ∧ Yn

d−→ Y ⇒ XnYn
d−→ cY

Stochasic Order Algebra

(i) op(1) + op(1) = op(1)

(ii) op(1) +Op(1) = Op(1)

(iii) op(1) ·Op(1) = op(1)

(iv) (1 + op(1))
−1 = Op(1)

(v) op(Op(1)) = op(1)

Properties of Estimators

• An estimator θ̂ is biased if E[θ̂] ̸= θ.

• An estimator θ̂ is consistent if θ̂
p−→ θ

• An estimator is asymptotically unbiased if Bias(θ̂) → 0

• In general, E[X̄n] = E[X], V ar(X̄n) =
V ar(X)

n

• The best unbiased estimator is an estimator that is
unbiased AND has the smallest asymptotic variance

• The best unbiased estimator is an estimator that is
unbiased AND has the smallest asymptotic variance,
and is a linear function of the observations Xi.

• A sequence of estimators θ̂n is
√
n−consistent if

√
n(θ̂n − θ) = Op(1)

• Two sequences of estimators θ̂n, θ̃n is√
n−asymptotically equivalent if

√
n(θ̂n − θ̃n) = Op(1)

The Delta Method

For a sequence of estimator θ̂n such that

√
n(θ̂n − θ)

d−→ N (0, v(θ))

and that g(x) is continuous on supp(θn), we have

√
n(g(θ̂n)− g(θ))

d−→ N
(
0, g′(θ) · v(θ) · g′(θ)⊤

)

Cookbook Approach to Delta Method

Suppose that we want to find the asymptotic distribution of
an estimator θ̂:
Step 1: θ̂ = X̄?

Yes ⇒ CLT,
√
n(θ̂ − θ)

d−→ N(0, V ar(X))
No ⇒ Step 2
Step 2: Is θ̂ a function of X̄n?

Yes ⇒ CLT,
√
n(X̄ − E[X])

d−→ N(0, V ar(X))
and by Delta method
√
n(g(X̄)− g(E[X]))

d−→ N(0,∇g⊤(θ)V ar(X)∇g(θ))
No ⇒ Step 3
Step 3: Is θ̂ a function of some Ȳn? Most likely yes, ⇒ CLT,
√
n(Ȳ − E[Y ])

d−→ N(0, V ar(Y ))
and by Delta method
√
n(g(Ȳ )− g(E[Y ]))

d−→ N(0,∇g⊤(θ)V ar(Y )∇g(θ))
No, then we likely cannot use the delta method.

Common Estimators

Method of Moments: Figure out which moment you want to
estimate, then use the sample analogue as the estimator.
(See Example).
Maximum Likelihood Estimators: Figure out the joint
(log-)likelihood function of the n−sample, check first and
second order conditions so that you have an estimator that
maximizes the joint likelihood function. (Note that MLE are
usually consistent asymptotically most efficient, but they are
often biased.)
Common MLE for First moments:

Poisson X̄n

Exponential X̄n

Normal X̄n

Neg. Bin./Geometric X̄n

Binomial/Bernoulli X̄nm/X̄n

Uniform max |Xi| or max Xi

Common Estimators for Variance:

Normal σ̂2
MLE = 1

n

∑
(Xi − X̄)2

General σ̂2
Unbiased = S2 = 1

n−1

∑
(Xi − X̄)2

Cramer-Rao Lower Bound

For any distribution that satisfies:

1. f(x; θ) has bounded support in x and the bounds do
not depend on θ (so CRLB does not work on uniform)

2. f(x; θ) has infinite support, is continuously
differentiable, and integrable for all θ

The lower bound of the asymptotic variance of any
estimator for parameters of the distribution is

V (θ̂) ≥ 1

I(θ)

where I(θ) is the Fisher information matrix defined as:

I(θ) = nE

[(
∂l(X; θ)

∂θ

)2
]
= −nE

[
∂2l(X; θ)

∂θ2

]

where l(X; θ) is the log-likelihood function for a single
observation.
Notice that, by construction, θ̂MLE always achieves CRLB,
but it is also almost always biased.

Pooled Standard Deviation Estimator

Suppose X and Y are assumed to have the same variance
and X ∼ N(µX , σ2) and Y ∼ N(µY , σ2), and we have the
null hypothesis H0 : µx = aµy against H1 : µX ̸= µy.
Suppose that σ2 is known, then for asymptotic inference, we
can use the standard normal distribution. By CLT, we have:

√
nX(X̄nX − µX)

d−→ N(0, σ2)
√
nY (ȲnY − µY )

d−→ N(0, σ2)

meaning

X̄nX

a∼ N(µX , n−1
X σ2)

ȲnY

a∼ N(µY , n−1
Y σ2)

Under H0, we have

X̄nX − aȲnY

a∼ N(0, (n−1
X + a2n−1

Y )σ2)

so

X̄nX − aȲnY

σ
√

n−1
X + a2n−1

Y

a∼ N(0, 1) (⋆)

Now suppose that σ2 is unknown, meaning that we would
have to estimate it somehow. Naturally, since we now have to
estimate 2 parameters from the normal distribution, we want
to construct a test-statistic T that follows a T−distribution:

N(0, 1)√
χ2/n

= T ∼ Tn

Notice that the estimator (⋆) above can conveniently serve as
the numerator of our test statistic. Next, we have to estimate
the standard deviation of the two population. Since we
assumed that the variances across the two distributions are
equal, we can use a pooled estimator.

Recall that S2 = 1
n−1

n∑
i=1

(
Xi − X̄

)2
is the unbiased

population estimator because the analogue sample variance
estimator is biased:

E

[
1

n

n∑
i=1

(
Xi − X̄

)2]
=

n− 1

n
σ2

So we have

E

[
1

nX

nX∑
i=1

(
Xi − X̄

)2]
=

nX − 1

nX
σ2



This means that our new estimator S2 has to be the
weighted average of the two estimators

S2 = wX

nX∑
i=1

(
Xi − X̄

)2
+ wY

nY∑
i=1

(
Yi − Ȳ

)2
. Consider what

would happen if I multiplied each estimator by their weights
(i.e., nX and nY )

E

[
nX∑
i=1

(
Xi − X̄

)2
+

nY∑
i=1

(
Yi − Ȳ

)2]
= (nX − 1)σ2(nY − 1)σ2 = (nX + nY − 2)σ2

and so we obtain a pooled unbiased population variance
estimator:

1

nX + nY − 2
E
[
(nX − 1)S2

X + (nY − 1)S2
Y

]
= σ2

⇒E[S2] = E

[
nX − 1

nX + nY − 2
S2
X +

nY − 1

nX + nY − 2
S2
Y

]
= σ2

Now we need to determine the asymptotic variances of S2,
recall that, by CLT and some algebra, we can show that

Xi − X̄nX

σ

a∼ N(0, 1)

and we can rewrite S2 (approximately) as:

S2 = (nX + nY − 2)−1·
X1 − X̄

. . .
XnX − X̄
Y1 − Ȳ
. . .

YnY − Ȳ



T 0 · · · 0
... InX+nY −2

...
0 · · · 0


︸ ︷︷ ︸

Rank=nX+nY −2


X1 − X̄

. . .
XnX − X̄
Y1 − Ȳ
. . .

YnY − Ȳ


So we know that (nX + nY − 2)S

2

σ2 ∼ χ2
nX+nY −2, and hence

our T− statistic is

⋆√
((nX + nY − 2)S2/σ2)/(nX + nY − 2)

=
X̄nX − aȲnY

√
S2

√
n−1
X + a2n−1

Y

= t ∼ TnX+nY −2

Hypothesis Testing

When we observe data, we create a test statistics Tn. Putting
Tn against a critical region Cα given the pre-determined size
of the test α. We reject the null hypothesis if Tn ∈ Cα

• Size: α = P (Reject | H0) = P (Tn ∈ Cn | H0

• Power: 1− β = β(θ) = P (Reject | H0)

For a test, we want to maximize power (1− β or equivalently
β(θ)) given a specific α.

p-value is the minimal α needed to reject H0 with the data
observed. One should not think about this as a probability.
Formally,

p− value ≡ inf{α ∈ (0, 1) | Tn ∈ Cα}

This definition is important because it gives clear guidelines
on calculating p-values for a discrete R.V.
A sequence of tests is consistent if it has asymptotic power
lim

n→∞
β(θ) = lim

n→∞
P (rejectH0 | θ) = 1, ∀θ ∈ Θ1

Local Power Analysis

Consider, instead, a sequence of alternative hypotheses
Hn1 : µn = µ0 +

δ√
n
against the H0 : µ = µ0. Then we can

calculate the power of a sequence of tests
β(θ) = P (rejectH0 | Hn1). As n → ∞, H1 gets closer and
closer to H0. This gives us an idea of what the local power
looks like when designing a test, not designing an
estimator.

Confidence Intervals

By CLT, if we have iid samples with finite second moment,
we know that we can achieve some type of asymptotic
normality of our estimators. For example, say

√
n(θ̂ − θ)

d−→ N(0, v(θ))

then we can also write

√
n

(
θ̂ − θ√
v(θ)

)
d−→ N(0, 1)

This means that we can use the z−table to form the interval
Fα for evidence that we would fail to reject under H0 as:

Fα = (µ0 − zαse(θ̂))

such that Tn ∈ Fα ⇒ Fail to reject H0.
Example:
For H0 : βk = a against H1 : βk < a, the confidence interval is(

−∞, β̂k + cα · se(β̂k)
]

Common Formulas

Given the regression model

y = Xβ + u = β1X1 + β2X2 + u

where ι is contained in X1, we can write

β̂ = (X⊤X)−1X⊤y

β̂1 = (X⊤
1 M2X1)

−1X⊤
1 M2y

û = MXy

Let the general linear estimator of β be denoted
β∗ = (W⊤X)−1W⊤y where W is non-random, then

E[β∗|X] = β + (W⊤X)−1W⊤E[u|X]

V ar(β∗|X) = V ar((W⊤X)−1W⊤u|X)

= (W⊤X)−1W⊤V ar(u|X)W (X⊤W )−1

V ar(β2|X) =
σ2
0

TSS1(1−R2
1)

V ar(Rβ̂|X) = RV ar(β̂|X)R⊤ = σ2
0R(X⊤X)−1R⊤

se(β̂|X) =

√
1

n− k
y⊤MXy(X⊤X)−1

=

√
1

n− k
û⊤û(X⊤X)−1

When testing 1 linear restriction (under GM1-5), we use

t =
Rβ̂ − r

se(R ˆbeta|X)
=

R(X⊤X)−1X⊤u√
1

n−k
û⊤ûR(X⊤X)−1R⊤

=
1√√√√ 1

n−k

u⊤

σ0
MX

u

σ0︸ ︷︷ ︸
∼χ2

n−k

· R(X⊤X)−1X⊤u√
σ2
0R(X⊤X)−1R⊤︸ ︷︷ ︸

∼N(0,1)

∼ Tn−k

When testing r linear restriction (under GM1-5), we use

W = (Rβ̂ − r)⊤
[

ˆV ar(Rβ̂ − r)
]−1

(Rβ̂ − r)

= (Rβ̂ − r)⊤
[
s2R(X⊤X)−1R⊤

]−1

(Rβ̂ − r)

=
(Rβ̂ − r)⊤

[
σ2
0R(X⊤X)−1R⊤]−1

(Rβ̂ − r)

s2/σ2
0

∼ (n− k)
χ2
r

χ2
n−k

F =
1

r
W ∼ Fr,n−k

Gauss-Markov Assumptions

(GM.1) Specification is correct

(GM.2) X has full rank

(GM.3) E[u|X] = 0

(GM.4) V ar(u|X) = E[uu⊤|X] = σ2
0In

(GM.5) u|X is distributed normally

With the first 4, β̂ is BLUE. With 5, we can get the exact
distribution of the t statistic and OLS is also an MLE.

OLS Asymptotics Assumptions

(OLS.1) Specification is correct

(OLS.2) The sequences (Yt), (Xt) are sampled i.i.d. or has
covariance weak enough for CLT to hold

(OLS.3) 1
n
·X⊤X → E[X⊤

t Xt] which has full rank

(OLS.4) E[ut|Xt] = 0

(OLS.5) E[u2
tX

⊤
t Xt] has full rank
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